Distributive residuated frames and generalized bunched implication algebras
نویسندگان
چکیده
We show that all extensions of the (non-associative) Gentzen system for distributive full Lambek calculus by simple structural rules have the cut elimination property. Also, extensions by such rules that do not increase complexity have the finite model property, hence many subvarieties of the variety of distributive residuated lattices have decidable equational theories. For some other extensions we prove the finite embeddability property, which implies the decidability of the universal theory, and we show that our results also apply to generalized bunched implication algebras. Our analysis is conducted in the general setting of residuated frames.
منابع مشابه
Relation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
This paper investigates connections between algebraic structures that are common in theoretical computer science and algebraic logic. Idempotent semirings are the basis of Kleene algebras, relation algebras, residuated lattices and bunched implication algebras. Extending a result of Chajda and Länger, we show that involutive residuated lattices are determined by a pair of dually isomorphic idem...
متن کاملAn Algebraic Glimpse at Bunched Implications and Separation Logic
We overview the logic of Bunched Implications (BI) and Separation Logic (SL) from a perspective inspired by Hiroakira Ono’s algebraic approach to substructural logics. We propose generalized BI algebras (GBI-algebras) as a common framework for algebras arising via “declarative resource reading”, intuitionistic generalizations of relation algebras and arrow logics and the distributive Lambek cal...
متن کاملIndependent definition of reticulations on residuated lattices
A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime fil...
متن کاملRelational groupoids and residuated lattices
Residuated structures are important lattice-ordered algebras both for mathematics and for logics; in particular, the development of lattice-valued mathematics and related non-classical logics is based on a multitude of lattice-ordered structures that suit for many-valued reasoning under uncertainty and vagueness. Extended-order algebras, introduced in [10] and further developed in [1], give an ...
متن کاملDistributive Lattices with a Generalized Implication: Topological Duality
In this paper we introduce the notion of generalized implication for lattices, as a binary function⇒ that maps every pair of elements of a lattice to an ideal. We prove that a bounded lattice A is distributive if and only if there exists a generalized implication ⇒ defined in A satisfying certain conditions, and we study the class of bounded distributive lattices A endowed with a generalized im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017